FUN3D Solutions for Nose Landing Gear

Veer N. Vatsa, David P. Lockard
And
Mehdi R. Khorrami

Outline

- Objectives
- Numerical Method
- Configuration and Flow Conditions
- Grids
- Results
- Computational Resources
- Observations

Objectives

- Assess the applicability of an unstructured grid flow solver FUN3D for Nose Landing Gear configuration
- Examine grid and turbulence modeling sensitivity

Numerical Method

Equations solved

- Unsteady Reynolds-averaged Navier-Stokes (URANS) equations Fully unstructured node-based flow solver (FUN3D)
- > Turbulence models
 - Hybrid RANS/LES model (Ref. Lynch et al. AIAA Paper 2008-3854)
 - Modified Delayed Detached Eddy Simulation (MDDES) model (Ref. Vatsa and Lockard AIAA Paper 2010-4001)

Spatial and temporal discretizations

- > Roe's flux-difference splitting scheme without flux limiter
- Optimized second-order backward difference (BDF2OPT) scheme for temporal discretization: Dual-time stepping with 15 subiterations

Boundary Conditions

- Constant temperature, no-slip floor & gear
- > Inviscid side walls & ceiling
- > subsonic inflow/outflow for inlet and exit planes
 - Outlet pressure specified
 - Inlet total pressure and temperature specified

Configuration and Flow Conditions

- Re = 73,000 based on post diameter
 - Flow code run in fully turbulent mode
- M = 0.166

Computational grids

- Unstructured, mixed-element grids using VGRID
- Sequence of 3 successively refined grids: 9, 25 and 71 million nodes
- Locally enriched 47 million node grid

Results

- Time step
 - > 4.92x10⁻⁶ seconds
- Number of time steps run
 - > Total : minimum of 80,000 time steps
 - > Sampling : Minimum of 50,000 time steps
- Convergence information
 - > Cp and Cp_{rms} checked after every 10,000 time steps

Surface Pressure comparisons (starboard wheel)

Exp. data, BART **FUN3D-9M-MDDES FUN3D-25M-MDDES FUN3D-71M-MDDES** 0.5 -0.5 -1 -1.5 180 270 **360** 90 θ (deg)

HRLES Model

MDDES Model

Surface Pressure comparisons (port wheel transverse cut at 237°)

Surface Pressure comparisons at door (Rows 2-4)

Surface Pressure comparisons at door

NASA

(Rows-5-8)

FUN3D-25M-HRLES

FUN3D-71M-HRLES

Power Spectral Density Comparisons

Power Spectral Density Comparisons ... (2)

Partial view of grid near torque-arm

25 M node grid

47 M node grid

2-D Turbulence Kinetic Energy at wheel wake centerline

Spanwise vorticity at wheel wake centerline

Spanwise vorticity at torque arm wake

Iso-surfaces of Q-criterion

Colored with perturbation pressure

FUN3D-9M-HRLES

FUN3D-25M-HRLES

Computational Resources

- Computer hardware
 - ➤ CPU: NAS Pleiades, 2 quad-core Xeon E5472 Harpertown cpu's/node, 1GB memory/core
 - Interconnect:Infiniband
- Resources (for 25 M nodes, HRLES case)
 - > CPU (or wall clock) Time / time step : 33.8 secs. using 960 cores
 - Minimum of 80,000 time steps in simulation
 - Minimum of 50,000 time-steps for data sampling

Observations

- What did you learn?
 - Computational challenges
 - Significant computational effort for statistically meaningful results
 - Constructing suitable grids very challenging
 - New insights into the physics
 - Complex flow physics, difficult to simulate with fixed (non-adapting)grids
 - > Manual, local refinement effective but tedious
 - Tunnel inflow/outflow b.c.'s could influence computations
 - Transition difficult to simulate, could impact flow on smaller components
 - Assessment of state-of-the-art based on your simulation for the problem category of interest
 - Encouraging results, solutions capture salient flow features
 - Uncertainty due to grids, transition and turbulence modeling
 - > Recommendations for follow-on efforts
 - Need test data to quantify Reynolds number sensitivity
 - Need systematic grid refinement/adaptation studies, better turbulence/transition modeling